tvdsm
is an R package designed to help you analyze dyadic data efficiently. This README serves as the main page for the pkgdown website and provides support documentation including quick examples and guidance on using the key function analyzeDyad
.
More information about the package can be found at https://oliverws.github.io/TVDSM/.
To read in-depth information about the TVDSM approach, please see Saunders Wilder, O (2017).
Quick Start
Below is a simple example of using analyzeDyad
to analyze dyadic data:
# Load the tvdsm package
library(tvdsm)
# Run the analysis using analyzeDyad
PersonA <- read.csvdata("PersonA.csv")
PersonB <- read.csvdata("PersonB.csv")
dyad <- as.dyad(PersonA, PersonB, cols = c("EDA"))
result <- analyzeDyad(dyad=dyad, window_size=60, lag=0,xname = "PersonA",yname="PersonB",plotParams = "raw")
head(result$summary)
# timestamp name Start End dx.r.squared dy.r.squared x.selfreg x.coreg x.interaction y.selfreg y.coreg y.interaction
# 1 1970-01-01 00:00:00 PersonA+PersonB 1970-01-01 00:00:00 1970-01-01 00:01:00 0.8609977 0.7678614 0.00000000 0.7595278 NA 0.00000000 1.3113947 NA
# 2 1970-01-01 00:01:00 PersonA+PersonB 1970-01-01 00:01:00 1970-01-01 00:02:00 0.8972776 0.6761051 0.02346823 0.7968545 NA -0.05435490 1.2197551 NA
# 3 1970-01-01 00:02:00 PersonA+PersonB 1970-01-01 00:02:00 1970-01-01 00:03:00 0.8029374 0.7413561 0.00000000 0.5092651 NA 0.00000000 1.9555250 NA
# 4 1970-01-01 00:03:00 PersonA+PersonB 1970-01-01 00:03:00 1970-01-01 00:04:00 0.8384866 0.7174741 0.00000000 0.3875892 NA 0.00000000 2.5704267 NA
# 5 1970-01-01 00:04:00 PersonA+PersonB 1970-01-01 00:04:00 1970-01-01 00:05:00 0.7615926 0.5771764 0.00000000 0.2225588 NA -0.05550322 4.3719645 NA
# 6 1970-01-01 00:05:00 PersonA+PersonB 1970-01-01 00:05:00 1970-01-01 00:06:00 0.6726747 0.4688025 -0.06390888 1.7151281 NA -0.14787452 0.4763664 NA
What does analyzeDyad do?
The analyzeDyad
function performs the following steps:
- Data Processing: Cleans and pre-processes the dyadic data for analysis.
- Statistical Analysis: Applies the chosen method (e.g., “default”) to uncover patterns and relationships in the data.
- Output Generation: Produces a summary of the analysis including statistical measures, model fits, and diagnostic plots.
For example, the output typically includes:
- A summary table of fit indices and parameter estimates.
- Diagnostic plots for assessing model assumptions and fit.
- Additional supporting metrics to help interpret the analysis results.
Learn More and Get Help
For more detailed documentation and support, please visit our Documentation Site
tvdsm is maintained by Oliver Saunders Wilder, PhD. Contributions and issues are welcome!