Package index
-
RMSSD()
- Compute Root Mean Square of Successive Differences (RMSSD)
-
TSDescriptivesByCondition()
- Alias for descriptivesByCondition
-
analyzeDyad()
- Analyze dyad data for TVDSM analysis
-
analyzeGroup()
- Analyze a group of participant data files
-
analyzeLags()
- Analyze model performance over varying lags
-
annotate.relative()
- Annotate a ggplot with relative coordinates
-
as.dyad()
- Convert Two Participant Data into a Dyad
-
as.group()
- Combine participant data into a group dyad
-
as.simulateddyad()
- Create Simulated Dyad Data
-
bootstrapSimulation()
- Bootstrap Dyadic Simulation
-
compareSim()
- Compare Simulated Signals
-
compareSimulatedDyads()
- Compare Simulated Dyads
-
describeDyad()
- Describe dyad interdependence
-
descriptivesByCondition()
- Descriptives By Condition
-
distance()
- Calculate Euclidean Distance
-
downsample.eda()
- Downsample EDA Data
-
dsmodel()
- Fit Dyadic Model
-
dsmodel.multilag()
- Fit Multi-lag Dyadic Model
-
dsmodel.sem()
- Fit Dyadic Model using SEM
-
dummyCodeByCondition()
- Dummy Code By Condition
-
dyad.dsgraph()
- Plot Dyadic Graph
-
dyad.dsmodel()
- Build Dyadic Model
-
dynamicalCorrelation()
- Compute dynamical correlation using bootstrap methods
-
examples()
- Run Example Simulations
-
fitDSModel()
- Fit a dynamic system model
-
fitDSModelForDyad()
- Fit dynamic system model for dyad data
-
generateI3Mat()
- Generate an I3 matrix for interdependence analysis
-
get.key()
- Extract a key from a list of objects
-
getFS()
- Get Sampling Frequency
-
ggCaterpillar()
- ggCaterpillar: Plot random effects as QQ-plots or caterpillar dotplots.
-
ggbracket()
- Add bracket annotations for statistical comparisons on a ggplot
-
gghist()
- Create a histogram with density and normality annotation
-
ggrel.x()
- Calculate a relative x-coordinate in a ggplot
-
ggrel.y()
- Calculate a relative y-coordinate in a ggplot
-
interruptedTimeSeries()
- Interrupted Time Series Analysis (Not Implemented)
-
linearTrend()
- Compute Linear Trend Slope
-
lmp()
- Calculate p-value from an lm object
-
makeDyad()
- Create Dyad Data Frame
-
multiplot()
- Arrange multiple ggplot objects in a grid
-
normalize()
- Normalize a Numeric Vector
-
o.Lag()
- Compute Lag Difference
-
o.center()
- Center a Numeric Vector
-
o.coef()
- Extract Coefficient with Significance Check
-
o.estLag()
- Estimate Lag with Moving Window
-
o.rescale()
- Rescale a Vector to [0,1]
-
o.scale()
- Scale Vector to [0,1]
-
o.smooth()
- Smooth a Numeric Vector
-
p.format()
- Format p-value for display
-
pbcopy()
- Copy Text to Clipboard
-
plot(<density>)
- Plot density contour of beta coefficients
-
plot(<dsgraph>)
- Create Plot for Dyadic State Space Graph
-
plot(<eda>)
- Plot EDA data with optional accelerometer data
-
plot(<lagparams>)
- Plot lag parameters over time
-
plot(<tvdsm>)
- Plot TVDSM model results
-
plotDyad()
- Plot dyadic data using ggplot2
-
plotEDAByCondition()
- Plot EDA by Condition
-
plotMetric()
- Plot a metric with grouping and error bars
-
plotTSDescriptives()
- Plot Time Series Descriptive Statistics
-
plotlyDyad()
- Plot dyadic data using Plotly
-
r2.corr.mer()
- Calculate R-squared from a Mixed Effects Model
-
rand.dyad()
- Generate Random Dyadic Data
-
read.Codes()
- Read Condition Codes
-
read.ERCodes()
- Read Engagement Codes
-
read.IBI()
- Read IBI Data from CSV
-
read.IBI.TS()
- Read IBI Time Series Data
-
read.RTCodes()
- Read RTCodes
-
read.actiwave()
- Read Actiwave Data
-
read.biosync()
- Read Biosync Data
-
read.csvdata()
- Read CSV Data with Timestamp Parsing
-
read.dyad()
- Read Dyad Data from File
-
read.e4()
- Read E4 Data
-
read.eda()
- Read EDA Data
-
read.edf()
- Read EDF Data
-
read.empatica()
- Read Empatica Data
-
read.empatica.acc()
- Read Empatica Accelerometer Data
-
read.empatica.bvp()
- Read Empatica BVP Data
-
read.empatica.eda()
- Read Empatica EDA Data
-
read.ibutton()
- Read iButton Data
-
read.reda()
- Read Reda Data
-
runAnova()
- Run ANOVA on model set
-
runFalsePairings()
- Run False Pairings Analysis
-
sampleSignal()
- Sample Signal
-
save.eda()
- Save EDA Data to File
-
saveDataForGraphing()
- Save data for graphing from TVDSM analysis
-
saveInterpersonalData()
- Save interpersonal analysis data to a CSV file
-
scatter_plot()
- Create a scatter plot with a linear fit and correlation annotation
-
se()
- Compute Standard Error of a Vector
-
simulate()
- Simulate Data using Linear Models
-
simulateDyad()
- Simulate a Dyadic Time Series
-
simulatePartner()
- Simulate a Partner Time Series
-
statespacegraph()
- Plot State Space Graph
-
topography()
- Plot Topography Density
-
tsDescriptives()
- Compute Time Series Descriptive Statistics
-
urlForModel()
- Generate URL for model visualization
-
validateConditionTimes()
- Validate condition times within data range
-
vectorfield()
- Create a Vector Flow Plot
-
vectorflow()
- Visualize Vector Field
-
window()
- Apply Moving Window Operation